Самодельные сверлильные станки для печатных плат. Самодельный настольный мини сверлильный станок Сверло для печатных плат своими руками

С момента изобретения станка производство различных механизмов и деталей значительно продвинулось. Теперь они являются настоящими помощниками человека, занимающегося обработкой металлов, пластмасс, дерева и других материалов.

Данные устройства позволяют выполнять довольно специфические работы на более качественном уровне.
К данному типу оборудования можно отнести и самодельный сверлильный станок для печатных плат, используемый в радиоэлектронике и смежных областях.

Станки для печатных плат

Печатные платы являются основой всех микросхем. Она предназначена для механического и электрического соединения разных электронных компонентов.
Производят такие платы из диэлектрического материала, на который в последствии и устанавливаются все элементы микроэлектроники.

На платы устанавливаются транзисторы, тиристоры и др. микроэлектроника, т.е. большое количество миниатюрных деталей, которые трудно рассмотреть не вооруженным глазом.

На самые простые платы добавляют дополнительные элементы, путем их прикручивания с последующей пайкой. Естественно для того, чтобы прикрутить элементы, необходимо в плате просверлить отверстия. Проделывать такие отверстия необходимо с ювелирной точностью. При расхождении даже в пару сотен микрон может быть очень ощутимым или же привести к браку изделия, если вы собираетесь расположить на плате большое количество электронных компонентов.

Любители радиоэлектроники часто занимаются изготовлением печатных плат, в которых требуется сверлить большое количество отверстий малого диаметра. Сверление мелких отверстий, диаметром 0,5-1,0 мм, с использованием классического настольного сверлильного, дрели или шуруповерта, является не очень удобным занятием, в ходе которого легко поломать сверло. Как следствие, производить сверление микроотверстий в печатных платах целесообразно при помощи специализированного мини сверлильного станка, с использованием твердосплавных сверл, диаметром 0,7-0,8 мм.
Использование мини сверлильного станка значительно упрощает работу, делая её практически механической, повышая тем самым производительность труда. При этом конструкция не отличается особой сложностью, по этим причинам многие предпочитают собирать их своими руками.
Таким самодельным сверлильным мини станком можно сверлить как печатные платы, так и любые другие заготовки, однако из-за конструкции станка есть ограничения по глубине отверстия.

Конструкция

На первый взгляд схема кажется сложной, однако, это не так. По сути, мини станок не сильно отличается от классического, он меньшего размера с некоторыми нюансами в схеме компоновки конструкции.

Так как данное оборудование обладает не большими размерами, его стоит рассматривать как настольное.
Самодельный вариант оборудования обычно слегка больше, чем покупной, из-за того что при сборке своими руками не всегда есть возможность оптимизировать конструкцию подобрав малогабаритные комплектующие. Но и в таком случае самодельный станок будет иметь малые габариты и вес не более 5 кг.

Видео по сборке

Элементы сверлильного станка

Чтобы собрать мини устройство своими руками, вам потребуется следующее:

  1. Станина;
  2. Переходная стабилизирующая рамка;
  3. Планка для перемещения;
  4. Амортизатор;
  5. Ручка-регулятор высоты;
  6. Крепление для двигателя;
  7. Двигатель;
  8. Цанга (или патрон);
  9. Переходники.

Стоит отметить, что мы описываем самодельный мини сверлильный станок, собираемый из подручных средств своими руками. Заводская конструкция отличается использованием специализированных узлов, которые изготовить собственноручно практически невозможно.
Основой сверлильного мини агрегата, как и любого другого, является станина. Она выполняет функцию основания, на которой будут держаться все узлы. Станиной может являться подручное устройство, например: скелет микроскопа; стойка для проведения линейных измерений цифровым индикатором.

А можно изготовить самому, например легкую деревянную станину – соединив дощечки саморезами, либо же тяжелую и устойчивую – приварив стальной профиль к металлическому листу. Лучше когда вес станины выше основного веса остальных узлов, это позволяет повысить устойчивость агрегата и снижает его вибрацию во время работы.

В качестве двигателя для могут послужить электродвигатели от: кассетных магнитофонов, принтеров, дисководов и другой офисной техники. В качестве крепления для сверл выбирается патрон или цанги. Однако патрон более универсальный, цанга же предусматривает установку сверл только определенных размеров.

Еще одна интересная схема на основе запчастей от CD-ROM и фена с автоматической регулировкой частоты вращения двигателя в зависимости от нагрузки.

Самодельная станина

При изготовлении стальной станины своими руками, под нее можно прикрутить ножки, для фиксации её положения.
Стабилизирующую рамку можно изготовить, например, из рейки или уголка, при этом лучше применять сталь.
Вид планки для перемещения можно подобрать любой, наиболее удобный, при этом лучше совместить её с амортизатором. В некоторых случаях, амортизатор может сам быть такой планкой. Функции этих деталей заключаются в вертикальном смещении оборудования во время работы.
Амортизатор можно изготовить самому или снять с офисной мебели раздвижные рейки, либо прибрести в магазине.
Ручка-регулятор высоты устанавливается на корпус, стабилизирующую рейку или амортизатор.
Крепление для двигателя устанавливают к стабилизирующей рамке, ею может быть, например, простой деревянный брусок. Она нужна для вывода двигателя на нужное расстояние и его надежной фиксации.
Затем двигатель устанавливают непосредственно на крепление.
К двигателю непосредственно присоединяют патрон или цанги, к которым крепятся переходники, используемые для установки сверл. Переходники подбираются индивидуально, в зависимости от вала двигателя, его мощности, типа сверл и т.п.
В заключении можно сказать, что собранный сверлильный мини станок, можно постоянно дорабатывать в ходе эксплуатации. Например, можно наклеить на патрон светодиодную ленту, для подсветки просверливаемых образцов.

О сверлильных станках на заметку

Станок представляет собой единую, жестко зафиксированную конструкцию, и состоит из основных элементов: основания, стойки различных переходников, крепления, электродвигателя и других элементов.
Его задача заключается в повышении точности обработки инструментом и снижение трудоемкости работ: он максимально облегчает труд человека (например, при обработке твердых материалов, таких как металлы), и снижает влияние человеческого фактора в производстве.
Обычные не дорогие мини станки перемещаются в основном по одной оси, например, сверлильные только сверху вниз.
Более дорогие же могут двигаться в нескольких плоскостях, как минимум в двух, вертикальной и горизонтальной. Такие модели уже могут являться автоматическими и полуавтоматическими.

Самый простой способ сверления печатных плат, держа двигатель с насаженным патроном для сверла в руках. При этом не раз ломались свёрла, и каждый радиолюбитель в мыслях ругал себя, и в следующий раз при изготовлении "печатки" - обязательно хотел что-то изменить в этом процессе. Каждый для себя решает сам, или что-то сделать из подручных средств, или приобрести готовое. Всё зависит от места жительства радиолюбителя. Например в сельской местности вдали от крупных центров, лучшим выходом из этого положения, это сделать станок своими руками.

Основное требование к такому станку, это чтобы он справлялся со своей задачей, ну и при его изготовлении не требовалось сложных токарных деталей, так как не у всех есть возможность иметь доступ к токарному станку. Предлагаю Вам простую конструкцию сверлильного станочка для домашней мастерской, которую я увидел на просторах "инета", и которую повторить в домашних условиях не составит особого труда. Автора данной конструкции к сожалению не знаю, и если объявится, то с удовольствием укажу здесь его имя и выражу благодарность за простой конструктив. Размеры станочка; основание 140х90 мм, высота 150 мм. Со своей задачей он вполне справляется и на рабочем столе занимает очень мало места. При таких размерах он позволяет сверлить отверстия в платах, шириной до 150-170 мм. (длинна платы не ограничена), что вполне достаточно в радиолюбительской практике.

Основание станочка изготавливается из любого подручного материала, толщиной не менее 6-8 мм. Можно из текстолита, гетинакса, металла, фанеры. Если брать фанеру, то лучше толщиной не менее 10 мм. Размеры основания указаны выше, но Вы можете для своих нужд изменить эти размеры, как и основания, так и других деталей. В дальнейшем я просто буду указывать свои размеры. Вся конструкция собирается на П-образной стойке, для которой необходимо взять толстый материал, чтобы вся конструкция не пружинила и имела достаточную прочность.

В данной конструкции используется полоса металла, шириной 25 мм. и толщиной 4-5мм. Общая длинна её 140-150 мм. Согнута П-образно, крепление к основанию 30мм, высота 40 мм и оставшееся это длинна 70-80 мм.
В стойке просверливаются три отверстия, одно снизу для её крепления к основанию, и два сверху для вертикальных штырей. Длинный штырь длинной 100 мм, диаметр 5 мм.

На длинный штырь одевается пружина. На коротком штыре нарезается резьба с двух сторон, для крепления штыря к стойке и вверху для контргайки. На этих двух штырях двигается подвижная часть с закреплённым на ней двигателем. Пружина должна быть такой жёсткости, чтобы поднимала вес подвижной части с двигателем.


Подвижная часть изготавливается из полосы металла, толщиной не менее 1,5-2,0 мм, шириной 20 мм. Общая длинна полосы 100 мм, размеры по сгибам 20х40х40 мм. Сверлится сквозное отверстие для толстого штыря и отверстие для тонкого штыря. Кстати, штыри можно делать и одинакового диаметра, главное, чтобы материал был достаточно жёсткий, например валы от матричных принтеров. Хомут для крепления двигателя - по диаметру имеющегося двигателя, изготовлен из листового алюминия. У меня двигатель используемый для станка ДПМ-30.

Для питания такого двигателя вполне достаточно источника с напряжением 12 вольт, и самое главное, для него необходимо изготовить схему управления двигателем. Это чтобы без нагрузки двигатель медленно вращался и при касании сверлом платы - начинал работать на полную мощность. Схем таких сколько угодно, например можно выбрать отсюда . На мой взгляд лучше собирать последнюю.
Хотя, чего греха скрывать, сам пока пользуюсь без такой схемы, у меня регулируемый БП и в паузах просто убираю напряжение.


Рычаг с держателем, конструкция хорошо видна на фотографиях. Закрепляем его в держателе и крепим к стойке.


Закрепляем подвижную часть и контрим гайкой.

Ну и всё, остаётся всю эту конструкцию закрепить на основании, закрепить имеющийся в распоряжении двигатель хомутом на подвижной части, закрепить сверло и начинать работать.
Да, у жены "конфисковал" отслужившую свой срок пробковую подставку под горячую посуду, и вырезал из неё на основание насадку для печатных плат и приклеил её на основание, это чтобы при сверлении печаток сверло не доставало до основания.

Удачи всем в Вашем творчестве и всего наилучшего!

P.S. Да, ещё хочу немного сказать про свёрла.
Не поленитесь и найдите себе для работы специальные свёрла для сверления стеклотекстолита. Наши свёрла из сплава ВК6М, у них обычно хвостовик одного диаметра и сами свёрла 0,7-2,0. Отверстия сделанные ими гораздо приличнее, чем сделанные обычными свёрлами и выглядят они так;


Импортные тоже примерно так выглядят.
Это не рекламы ради, а для удобства и удовольствия работы.
Я сверлил платы сначала обычными свёрлами (по металлу), которые после нескольких дырок сильно тупятся, а после десятка - приходят в полную негодность, потом узнал про такие свёрла, нашёл их и приобрёл (цена их, кстати лежит в пределах 20-50 рэ). Попробовал сверлить ими - небо и земля. По отзывам радиолюбителей - одним сверлом можно сверлить платы несколько лет (несколько тысяч отверстий), пока не сломаешь из-за небрежного обращения.

Но, эти свёрла не подходят для ручных сверлилок. При попытке сделать ими отверстие - оно мигом ломается (из-за малейшего перекоса). То есть ими можно долго и надёжно сверлить только в станке, и зажимной патрон не должен иметь никаких биений, а сверло зажатое им должно быть хорошо отцентрировано. Тогда и долговечность их гарантирована.

Надоело, в общем то, сверлить платы ручной сверлилкой поэтому решено было изготовить небольшой сверлильный станок исключительно для печатных плат. Конструкций в интернете полным полно, на любой вкус.Посмотрев несколько описаний подобных сверлилок, пришел к решению повторить сверлильный станок на основе элементов от ненужного, старого CD ROM’a. Разумеется, для изготовления этого сверлильного станочка придется использовать материалы те, что находятся под рукой.

От старого CD ROM’a для изготовления сверлильного станочка берем только стальную рамку со смонтированными на ней двумя направляющими и каретку, которая передвигается по направляющим. На фото ниже все это хорошо видно.

На подвижной каретке будет укреплен электродвигатель сверлилки. Для крепления электродвигателя к каретке был изготовлен Г-образный кронштейн из полоски стали толщиной 2 мм.

В кронштейне сверлим отверствия для вала двигателя и винтов его крепления.

В первом варианте для сверлильного станочка был выбран электродвигатель типа ДП25-1,6-3-27 с напряжением питания 27 В и мощностью 1,6 Вт. Вот он на фото:

Как показала практика, этот двигатель слабоват для выполнения сверлильных работ. Мощности его (1,6 Вт) недостаточно- при малейшей нагрузке двигатель просто останавливается.

Вот так выглядел первый вариант сверлилки с двигателем ДП25-1,6-3-27 на стадии изготовления:

Поэтому пришлось искать другой электродвигатель-помощнее. А изготовление сверлилки застопорилось…

Продолжение процесса изготовления сверлильного станочка.

Через некоторое время попал в руки электродвигатель от разобранного неисправного струйного принтера Canon:

На двигателе нет маркировки, поэтому его мощность неизвестна. На вал двигателя насажена стальная шестерня. Вал этого двигателя имеет диаметр 2,3 мм. После снятия шестерни, на вал двигателя был надет цанговый патрончик и сделано несколько пробных сверлений сверлом диаметром 1 мм. Результат был обнадеживающим- «принтерный» двигатель был явно мощнее двигателя ДП25-1,6-3-27 и свободно сверлил текстолит толщиной 3мм при напряжении питания 12 В.

Поэтому изготовление сверлильного станочка было продолжено…

Крепим электродвигатель с помощью Г-образного кронштейна к подвижной каретке:


Основание сверлильного станочка изготовлено из стеклотекстолита толщиной 10мм.

На фото – заготовки для основания станочка:

Для того, чтобы сверлильный станочек не ёрзал по столу во время сверления, на нижней стороне установлены резиновые ножки:

Конструкция сверлильного станочка –консольного типа, то есть несущая рамка с двигателем закреплена на двух консольных кронштейнах, на некотором расстоянии от основания. Это сделано для того, чтобы обеспечить сверление достаточно больших печатных плат. Конструкция ясна из эскиза:



Рабочая зона станочка, виден белый светодиод подсветки:

Вот так реализована подсветка рабочей зоны. На фото наблюдается избыточная яркость освещения. На самом деле-это ложное впечатление (это бликует камера)- в реальности все выглядит очень хорошо:

Консольная конструкция позволяет сверлить платы шириной не менее 130 мм и неограниченной (в разумных пределах) длиной.

Замер размеров рабочей зоны:

На фото видно, что расстояние от упора в основание сверлильного станочка до оси сверла составляет 68мм, что и обеспечивает ширину обрабатываемых печатных плат не менее 130мм.

Для подачи сверла вниз при сверлении имеется нажимной рычаг-виден на фото:

Для удержания сверла над печатной платой перед процессом сверления, и возврата его в исходное положение после сверления, служит возвратная пружина, которая надета на одну из направляющих:

Система автоматической регулировки оборотов двигателя в зависимости от нагрузки.

Для удобства пользования сверлильным станочком было собрано и испытано два варианта регуляторов частоты вращения двигателя. В первоначальном варианте сверлилки с электродвигателем ДП25-1,6-3-27 регулятор был собран по схеме из журнала Радио №7 за 2010 год:

Этот регулятор работать как положено не захотел, поэтому был безжалостно выброшен в мусор.

Для второго варианта сверлильного станка, на основе электродвигателя от струйного принтера Canon, на сайте котов-радиолюбителей была найдена еще одна схема регулятора частоты вращения вала электродвигателя:

Данный регулятор обеспечивает работу электродвигателя в двух режимах:

  1. При отсутствии нагрузки или, другими словами, когда сверло не касается печатной платы, вал электродвигателя вращается с пониженными оборотами (100-200 об/мин).
  2. При увеличении нагрузки на двигатель регулятор увеличивает обороты до максимальных, тем самым обеспечивая нормальный процесс сверления.

Регулятор частоты вращения электродвигателя собранный по этой схеме заработал сразу без настройки. В моем случае частота вращения на холостом ходу составила около 200 об/мин. В момент касания сверла печатной платы-обороты увеличиваются до максимальных. После завершения сверления, этот регулятор снижает обороты двигателя до минимальных.

Регулятор оборотов электродвигателя был собран на небольшой печатной платке:

Транзистор КТ815В снабжен небольшим радиатором.

Плата регулятора установлена в задней части сверлильного станочка:

Здесь резистор R3 номиналом 3,9 Ом был заменен на МЛТ-2 номиналом 5,6 Ом.

Испытания сверлильного станка прошли успешно. Система автоматической регулировки частоты вращения вала электродвигателя работает четко и безотказно.

Небольшой видеоролик о работе сверлильного станка.

Из всех видов сверлильных аппаратов самый маленький — вертикальные настольные станки. Компактные устройства созданы специально для сверления тончайших отверстий в мелких заготовках, развальцовки, выполнения отверстий с гранями, нарезки резьбы и заклепки. Это удобное оборудование для производств на малых площадях и с небольшими оборотами. Дополнительное преимущество мини-станков в их невысокой цене.

Назначение мини сверлильных станков

Несмотря на мини-размеры настольные сверлильные аппараты полноценно выполняют свои задачи, не уступая в точности и аккуратности крупным аналогам.

Многие сверлильные настольные станки совмещают функцию фрезерования и широко используются в ремонтных мастерских и учебных центрах. Чаще всего мини-станки используют для сверления отверстий в микросхемах или печатных платах. Микро отверстия диаметром менее миллиметра невозможно сделать дрелью.

Конструкция мини станка

Основным типом движения, используемым в конструкции, является вращение сверла, удерживаемого шпинделем. Движение подачи представлено перемещением этого же сверла в вертикальной плоскости. Деталь располагается на рабочей столешнице.

Все главные узлы станка размещены в стойке, расположенной на тяжелой станине — основании. По стойке проходят рельсы для передвижения рабочей головки со шпинделем, а внутри колонны — двигатель. Если предусмотрена возможность переключения скоростей, то она реализуется посредством рукоятки. На современных моделях параметры контролируются электроникой.

Исполнительная головка смазывается маслом, подкачиваемое насосом. Насос подает и охладитель. Исполнительная головка, как правило, отливается из чугуна, в ней расположены устройства подач и скоростей. Коробка скоростей функционирует за счет зубчатых передач, переключаемых ручкой. Электродвигатель мини станка работает от бытовой электросети с напряжением 220 В.

Иногда станки оснащаются защитным экраном, предупреждающим попадание волос или ткани в патрон во время вращения. Экран обычно из прозрачной прочной пластмассы, он имеет съемную конструкцию.

Принцип действия мини-сверлильного станка

При запуске электромотора он приводит в движение шпиндель. Мощность электродвигателя настольной микро-модели может составлять от 150 до 300 Вт. Чаще используется ременной привод, но в самых маленьких моделях возможна и зубчатая передача. Скорость изменяется перемещением рукоятки.

Сверло вставляется в небольшой кулачковый или цанговый патрон, который крепко удерживает конец инструмента. Кулачковый патрон зажимается ключом, цанговый — автоматически.

Установленное сверло опускается к детали при нажатии на рукоятку подачи. Она напоминает рычаг и находится справа от головки. Возвращается на исходное место головка самостоятельно, под действием встроенной пружины. На некоторых сверло можно застопорить в любой точке с помощью затяжного рычага.

Существуют сверлильные устройства, оборудованные регулирующим глубину сверления механизмом. Он запускается так: на боковой стороне детали отмечается необходимая глубина будущего отверстия. Патрон опускается до тех пор, пока конец сверла не достигнет отметки. Затяжная рукоятка затягивается, сдерживая дальнейшее продвижение сверла.

Характеристики мини-сверлильных станков

Мощность — этот параметр, влияющий на потребление электроэнергии и производительность. Для микро отверстий по печатным платам достаточно минимальной мощности 150 Вт.

Скорость вращения сверла варьируется от 200 оборотов в минуту до 3000. Современные мини станки оснащаются редуктором с возможностью переключения до 12 скоростных режимов.

Наибольшая высота детали, обрабатываемой на мини-станке, составляет 50 см. Этот показатель определяется верхней точкой сверлильной головки, которая перемещается вертикально по рельсам стойки. Обычно передвижение модуля происходит вручную. В определенной точке головка закрепляется специальной рукояткой.

Диаметр сверления указывает не столько на размер отверстий, сколько на поперечник сверл. Минимальный диаметр хвостовика составляет 16 мм.

Марка станка Мощность, Вт Обороты, об\мин Кол-во скорост. Диаметр патрона, мм Вертикальный ход, мм Вес, кг
Корвет 411 150 100-5000 2 6 40 6
Зубр ЗСС-350 350 580 — 2650 5 13 50 16,4
350 580 — 2650 5 16 50 18
Кратон DM-13 350 620 — 2620 5 13 50 17

Таблица 1. Характеристики некоторых моделей мини сверлильных станков

Вес и размер станины при работе с микро деталями имеют не такое значение, как при сверлении крупных заготовок. Но основание должно быть достаточно устойчивым и крепким для удержания инструмента. Поверхность рабочей столешницы идеально ровная, с несколькими прорезями. Боковые прорези используются для фиксации детали с помощью струбцин или тисочков, размещения упоров и линеек. А центральная прорезь предохраняет сверло от контакта со столешницей при сверлении сквозных отверстий.

Сверла для мини станка

В большинстве случаев на таком оборудовании изготавливают микро платы для радиоприборов. Плата располагается на стеклотекстолите, разрушительном для сверл. Достаточно сделать не более ста отверстий и сверло необходимо точить или выбрасывать. Собственноручно заточить микро сверло диаметром 0,5 мм не представляется возможным. Существуют сверла из твердых сплавов, выдерживающих работу по стеклотекстолиту. Можно найти микро диаметры от 0,5 до 2 миллиметров, поперечник хвостовой части у всех стандартный — 2 мм. Такого сверла хватит на несколько тысяч микро отверстий. Но работать им нужно очень аккуратно, избегая боковых нажатий, которые моментально ломают хрупкий инструмент.

Попытки установить микро сверло в ручную дрель приводят к его поломке. В сверлильном станке же оно исправно прослужит много лет.

Видеоролики о том, как самому сделать мини сверлильный аппарат:

С изобретением станков человечество серьезно продвинулось в сфере производства различного рода деталей и механизмов. Станки стали настоящим подспорьем для любого, кто намеревается обрабатывать металлы, дерево и любые другие материалы.

Ведь эти устройства изначально предназначаются для выполнения довольно специфических работ, которые по-другому вам качественно выполнить не удастся.

Самодельный станок для печатных плат из направляющей рейки

К такому оборудованию относится и сверлильный станок для печатных плат, что используется в электромеханике и смежных производственных сферах.

1 Общая информация

Любой станок – это специальный прибор, который собирают из нескольких составляющих. Задача этого прибора заключается в придании человеку возможности обработать тот или иной инструмент с большой точностью. То есть практически исключить из процесса конкретно ручной труд.

Это совершенно необходимо в работе, где нужна точность. Если при этом используется деталь из металла или любого точного материала, то без использования станка вам будет просто не обойтись.

Читайте также: о назначении и видах цанг.

Станок состоит из станины, переходников, установки под движок и еще нескольких механизмов. Все они собираются в единую конструкцию, что жестко зафиксирована в одном или нескольких положениях.

Стандартные и самые дешевые станки или мини-станки, если мы говорим об оборудовании, что предназначается для обработки миниатюрных деталей, могут перемещаться только по одной оси. То есть перемещение рабочего сверла выполняется сверху вниз. Это базовая функция станка, без которой его и станком назвать-то нельзя.

Пневматическое горное сверло для станка

Более продвинутые модели можно точно настраивать на определенную координату, которая выставлена на столе. Это уже могут быть даже полуавтоматические или автоматические модели.

Как вы сами понимаете, именно четкая фиксация на прочной раме и возможность практически исключить человеческий фактор непосредственно в выполнении работ по сверлению – это основной плюс станков.

1.1 Особенности станков для печатных плат

Станки для печатных плат – это одна из разновидностей подобного оборудования. Вот только такие агрегаты, как правило, являются мини-образцами. И это вполне очевидно, ведь работать на них необходимо с печатными платами.

Для тех, кто не знаком с электротехникой проясним, что печатные платы – это по сути основания для любой микросхемы или электронной мини-цепочки. Практически каждый прибор в своей конструкции имеет хотя бы одну печатную плату. В особенности это касается приборов, что работают на электричестве.

Для образования единых стандартов в электротехнике и создания устойчивого основания были введены печатные платы. Производят их из диэлектрика, на который прикручивают или припаивают различного рода детали и соединения.

Плата может содержать на себе как мелкий транзистор и вывод к нему от элемента питания, так и огромное количество деталей, столь миниатюрных, что неподготовленный человек их даже не рассмотрит (речь идет о компьютерном оборудовании).

Конечно, в данной ситуации стоит отметить огромное количество печатных плат, что различаются по своей конструкции, используемому материалу и т.д. Но отметим, что все они являются разновидностью одного элемента, что выполняет функции основания для микросхем.

Простейшие платы оборудуют дополнительными элементами за счет их прикручивания и последующей пайки. Как вы сами понимаете, для прикручивания деталей необходимо проделать в плате отверстия.

Читайте также: о станках ТВ и их назначении.

Причем проделывать надо их с филигранной точностью. Расхождение даже в полмиллиметра может быть если не фатальным, то очень ощутимым. Особенно если вы собираетесь заполнить плату полностью.

Установка сверла на станок

Чего только стоит тот факт, что сверла для мини-станка по печатным платам в своем диаметре могут начинаться от образцов в 0,2-0,4 мм. И это если говорить о дешевых станках. Более продвинутое оборудование для создания сложных микросхем будет использовать еще более миниатюрные инструменты.

Как вы сами понимаете, обрабатывать подобные детали вручную – дело не из легких. Даже если вам и получится сделать парочку отверстий в нужном месте и нужной толщины, то займет этот процесс слишком много времени, а результат может быть испорчен единственной ошибкой.

Использовав же станок для печатных плат, работа существенно упрощается и становится практически механической. Равно как и повышается ее производительность. Да и конструкция такого оборудования сложностью не отличается, поэтому создать его можно своими руками.
к меню

2 Конструкция станка

Конструкция мини-станка для обработки печатных плат имеет довольно простую схему. По сути, этот станок мало чем отличается от стандартных сверлильных моделей, только он намного меньше и имеет несколько нюансов. Практически всегда мы рассматриваем настольный сверлильный мини-агрегат, так как он будет иметь размеры, что редко превышают отметку в 30 см.

Если рассматривать самодельный образец, то он может быть чуть больше, но только за счет того, что человек, который собирал его своими руками, просто не смог оптимизировать конструкцию должным образом. Такое бывает, если под руками попросту не находится подходящих деталей.

В любом случае станок, даже если он собран своими руками, будет иметь небольшие габариты и весить до 5 килограмм.

Опишем сейчас непосредственно конструкцию станка, а также детали, из которых его надо изготовить. В качестве основных составляющих при сборке мини-устройства для сверления плат используют:

  • станину;
  • переходную стабилизирующую рамку;
  • планку для перемещения;
  • амортизатор;
  • ручку для манипуляций с высотой;
  • крепление для движка;
  • движок;
  • блок питания;
  • цангу и переходники.

Так выглядит готовый самодельный сверлильный станок для печатных плат

Итак, список используемого оборудования достаточно объемный, но на самом деле ничего сложного здесь нет.

2.1 Разбор конкретных деталей

Обратимся теперь к конкретным деталям, что уже были названы выше, а также дадим рекомендации по их подбору.

Для начала отметим, что мы сейчас описываем самодельный станок, который по сути можно собрать из подручных средств. Конструкция заводских образцов отличается от описанной нами только применением специализированных материалов и деталей, которые в домашних условиях создать практически невозможно. Придется покупать.

Начинается самодельный мини-станок, равно как и любой другой станок, со станины. Станина выполняет функции основания, на ней держится вся конструкция, на нее же монтируют поддерживающую деталь, на которой крепится обрабатываемая плата.

Станину желательно делать из тяжелой металлической рамки. Вес ее должен быть больше, чем вес всей остальной конструкции. Причем расхождение может быть довольно внушительным. Только так вы добьетесь стабильности агрегата во время работы. Особенно это касается моделей, что собираются своими руками.

И не стоит обманываться, когда видите приставку мини. Мини-станок – это такой же станок, и он все так же требует качественной стабилизации. Под станину часто прикручивают ножки или что-то подобное, чтобы дополнительно зафиксировать ее положение.

Самодельный сверлильный станок со стабилизационной рамкой

Стабилизирующая рамка является креплением для всего механизма. Ее делают из рейки, уголка или чего-то подобного. Предпочтительно использовать деталь. Планка для перемещения может быть самой разнообразной конструкции и часто совмещается с амортизатором. Иногда, амортизатор и сам является планкой для перемещения.

Эти две детали выполняют функции вертикального смещения станка во время работы. Благодаря им, станок можно быстро и без лишних усилий эксплуатировать.

Вариантов решений для выполнения таких деталей есть очень много. Начиная от самодельных или снятых с офисной мебели раздвижных реек на пружине, до профессиональных амортизаторов масляного типа.

Ручка для манипуляций крепится непосредственно к корпусу станка, амортизатору или стабилизирующей рейке. С ее помощью можно осуществлять давление на конструкцию, опуская и поднимая ее по своему желанию.

К стабилизирующей рамке уже прикрепляют планку для двигателя. Это может быть даже обычный деревянный брусок. Его задача – вывод движка на нужное расстояние и его надежная фиксация.

Движок монтируют на крепление. В качестве движка тоже можно пользоваться огромным количеством деталей. Начиная от дрели, и заканчивая движками, что сняты с принтеров, дисководов и другой офисной техники.

Сверла для сверления отверстий в печатных платах

К движку цепляют цанги и переходники, которые будут основание для крепления сверла. Тут уже можно дать только общие рекомендации, так как переходники всегда подбираются индивидуально. Влияние на их выбор окажет вал двигателя, его мощность, тип используемого сверла и т.д.

Блок питания для мини-станка подбирается такой, чтобы он мог обеспечивать движок нужным напряжением в достаточных количествах.

2.2 Технология сборки станка

Теперь обратимся к общему алгоритму, по которому ведется сборка агрегата для сверления печатных плат своими руками.

  1. Монтируем станину, крепим к ней ножки.
  2. Устанавливаем рамку держателя основной конструкции на станину.
  3. Крепим к рамке механизм перемещения и амортизатор.
  4. Монтируем крепление для движка, как правило, оно фиксируется на рамку перемещения.
  5. Устанавливаем ручку на крепление для двигателя.
  6. Устанавливаем движок и регулируем его положение.
  7. Прикручиваем к нему цангу и переходники.
  8. Монтируем блок питания, подключаем его к движку и сети.
  9. Подбираем и фиксируем сверло.
  10. Тестируем работу механизма.

Все соединения и их тип можете подбирать по своему усмотрению. Однако рекомендуется использовать болты и гайки, чтобы иметь возможность в нужный момент разобрать конструкцию, заменить ее составляющие или улучшить всю схему действия станка.
к меню

2.3 Самодельный станок для сверления печатных плат (видео)

СТАНОК ДЛЯ СВЕРЛЕНИЯ ПЕЧАТНЫХ ПЛАТ

Первый вариант настольного станочка для сверления плат сделал ещё три года назад. Делал целенаправленно, именно для сверления плат (для другого не предназначен) и исключительно из подручных материалов, делал на «скорую руку» как временное приспособление, потратил на изготовление выходной день. А он взял и «прижился9raquo; — оказался необыкновенно удобным в работе.

Диаметр возможных для использования свёрл от 0,5 до 1 мм включительно. Старт спринтерский, финиш без инерции. Подвёл плату, нажал — отверстие готово, отпустил — в исходное положение сверло вернулось само. На всё 2-3 секунды. Через полгода, раз вещь пришлась «ко двору», потратил ещё вечер и придал ей более подобающий и приемлемый вид.

Устройство и принцип работы, как видите, остались прежними. Прошло ещё два года, но так и не собрался сделать что-нибудь более солидное, хотя комплектующие для этого подобрались. От добра, добра не ищут. А вот модернизацию себе позволил.

Появились существенные изменения:

  • опускание происходит при помощи нажатия рукоятки
  • включение электродвигателя происходит при опускании в момент нажатия кнопки о упор
  • стол для сверления на резьбе и может подниматься - опускаться для регулировки расстояния от поверхности просверливаемой платы до «точки9raquo; включения электродвигателя
  • электродвигатель запитан постоянным током

С таночек для сверления плат — схема подключения

Основа всего станина и направляющие.

Втулки, их внутренний диаметр лишь на одну - две десятых миллиметра больше диаметра направляющих, материал - эбонит (диэлектрик), выбран не случайно, это своеобразная «развязка9raquo; от электрического тока. Из чего сделан поясок, в дальнейшем фиксирующий тягу, догадаться не сложно.

Кнопка - включатель закреплена на пластиковом уголке 2 винтами с гайками, сам уголок соединён с втулками клеем.

В валу электродвигателя имеется отверстие с резьбой М2, приладить цангу труда не составило. И фетровые сальники (с обеих сторон вала) дождались масла.

В качестве «несущего9raquo; элемента, к которому крепиться двигатель и который в свою очередь крепиться к втулкам был выбран мебельный уголок (лёгкий, прочный и легко обрабатывается). Диодный мост и конденсатор в защитном кожухе.

Упор состоит из пружинки, с одной стороны которой приклеен именно сам резиновый упор, с другой припаяна гайка, накручивающаяся на винт, который установлен на резьбе в отверстии станины.

Сверлильный стол установлен на винт (его дополнительная функция описана выше).

Ну и, в конце концов, как это всё работает:

Видео процесса сверления

Для тех, кому понравилось: всё то, из чего был собран этот станочек для сверления плат. ранее лежало по банкам, коробкам и просто углам. Думаю, что намёк более чем очевиден. Желаю Вашим, свёрлам никогда не тупиться, Babay .

Буратор. Сверлильный станок для печатных плат

В этой статье мы поделимся с вами разработанным нами станком для сверления печатных плат и выложим все материалы, необходимые для самостоятельного изготовления этого станка. Все что понадобится, это распечатать детали на 3D-принтере, порезать фанеру лазером и закупить некоторые стандартные комплектующие.

Описание конструкции

В основе конструкции довольно мощный 12ти вольтовый двигатель из Китая. В комплекте с двигателем они продают еще патрон, ключ и десяток сверел разного диаметра. Большинство радиолюбителей просто покупают эти двигатели и сверлят платы удерживая инструмент в руках.
Мы решили пойти дальше и на его основе сделать полноценный станок с открытыми чертежами для самостоятельного изготовления.

Буратор. Общий вид

Для линейного перемещения двигателя мы решили использовать полноценное решение — полированные валы диаметром 8мм и линейные подшипники. Это дает возможность минимизировать люфты в самом ответственном месте.

Буратор. Общий вид

Основная станина сделана из фанеры толщиной 5мм. Фанеру мы выбрали потому, что стоит очень дешево. Как материал, так и сама резка. С другой стороны ничего не мешает (если есть возможность) просто вырезать все те же самые детали из стали. Некоторые мелкие детали сложной формы напечатаны на 3D-принтере.
Для поднятия двигателя в исходное положение использованы две обычные канцелярские резинки. В верхнем положении двигатель сам отключается при помощи микропереключателя.
С обратной стороны мы сделали место для хренения ключа небольшой пенал для сверел. Пазы в нем имеют разную глубину, что делает удобным хранение сверел с разным диаметром.

Буратор. Пенал для хранения сверел

Впрочем, все это проще увидеть на видео:

Детали для сборки

  1. Двигатель с патроном и цангой. Можно применить любой другой с диаметром до 28мм
  2. Фанерные детали. Ссылку на файлы для лазерной резки в формате dwg можно будет скачать в конце статьи. Достаточно просто найти фирму, которая занимается лазерной резкой материалов и передать им скачанный файл

  • Напечатанные на 3D-принтере детали. Ссылку на файлы для лазерной резки в формате dwg можно будет скачать в конце статьи
  • Полированные валы диаметром 8мм и длиной 75мм — 2шт. Вот ссылка на продавца с самой низкой ценой за 1м, которую я видел
  • Линейные подшипники на 8мм LM8UU — 2шт
  • Микропереключатель KMSW-14
  • Винт М2х16 — 2шт
  • Винт М3х40 в/ш — 5шт
  • Винт М3х35 шлиц — 1шт
  • Винт М3х30 в/ш — 8шт
  • Винт М3х30 в/ш с головкой впотай — 1шт
  • Винт М3х20 в/ш — 2шт
  • Винт М3х14 в/ш — 11шт
  • Винт М4х60 шлиц — 1шт
  • Болт М8х80 — 1шт
  • Гайка М2 — 2шт
  • Гайка М3 квадратная — 11шт
  • Гайка М3 — 13шт
  • Гайка М3 с нейлоновым кольцом — 1шт
  • Гайка М4 — 2шт
  • Гайка М4 квадратная — 1шт
  • Гайка М8 — 1шт
  • Шайба М2 — 4шт
  • Шайба М3 — 10шт
  • Шайба М3 увеличенная — 26шт
  • Шайба М3 гроверная — 17шт
  • Шайба М4 — 2т
  • Шайба М8 — 2шт
  • Шайба М8 гроверная — 1шт
  • Набор монтажных проводов
  • Набор термоусадочных трубок
  • Хомуты 2.5 х 50мм — 6шт
  • Весь процесс сборки записан на видео:

    Если следовать именно такой последовательности действий, то собирать станок будет очень просто.
    Вот так вот выглядит полный набор всех комплектующих для сборки:

    Комплектующие для сборки сверлильного станка

    Помимо них для сборки потребуется простейший ручной инструмент. Отвертки, шестигранные ключи, плоскогубцы, кусачки и т.д.
    Перед тем начинать собирать станок желательно обработать напечатанные детали. Удалить возможные наплывы, поддержки, а также пройти все отверстия сверлом соответствующего диаметра. Фанерные детали по линии реза могут пачкать гарью. Их можно также обработать наждачной бумагой.
    После того, как все детали подготовлены начать проще с установки линейных подшипников. Они закрадываются внутрь напечатанных деталей и прикручиваются к боковым стенкам:

    Установка ручки и шестерни

    Теперь можно собрать фанерное основание. Сначала боковые стенки устанавливаются на основание, а затем вставляется вертикальная стенка. В верхней части также есть дополнительная напечатанная деталь, которая задает ширину в верхней части. При закручивании винтов в фанеру не прикладывайте слишком большое усилие.

    В столике на переднем отверстии необходимо сделать зенковку, чтобы винт с головой впотай не мешал сверлить плату. С торца также установлена напечатанная крепежная деталь.

    Теперь можно приступить к сборке блока двигателя. Он прижимается двумя деталями и четырьмя винтами к подвижному основанию. При его установке необходимо следить, чтобы отверстия для вентиляции оставались открытыми. На основание он закрепляется при помощи хомутов. Сначала вал продевается в подшипник, а затем на нем защелкиваются хомуты. Также установите винт М3х35, который в будущем будет нажимать на микропереключатель.

    Сборка блока двигателя

    Микропереключатель устанавливается на прорези кнопкой в сторону двигателя. Позже его положение можно будет отклибровать.

    Резинки накидываются на нижнюю часть двигателя и продеваются до «рогов9. Их натяжение надо отрегулировать так, чтобы двигатель поднимался до самого конца.

    Теперь можно припаять все провода. На блоке двигателя и рядом с микропереключателем есть отверстия для хомутов, чтобы закрепить провод. Также этот провод можно провести внутри станка и вывести с обратной стороны. Убедитесь, что припаиваете провода на микропереключателе к нормально замкнутым контактам.

    Осталось только поставить пенал для сверел. Верхнюю крышку нужно зажать сильно, а нижнюю закрутить очень слабо, используя для этого гайку с нейлоновой вставкой.

    Пенал для сверел

    Пенал для сверел

    На этом сборка окончена!
    Из доработок вы можете проклеить фанерные детали, для увеличения жесткости. Можно также сделать регулятор оборотов двигателя.

    Ссылки для скачивания

    Также этот сверлильный станок можно приобрести в разобранном виде в нашем магазине.

    Прочитав статьи о достижениях форумчан в области станкостроения (молодцы, ребята!) с упоминанием узлов СД приводов, полез в хламовник и достал дохлый СД TEAC .
    Взглянув на каретку, держащую лазерный модуль, сразу понял – это почти готовый узел привода сверлильной головки!

    Точность подачи не вызывает сомнений – ведь САМ ЛАЗЕР позиционировала! Но для бОльшей надежности (все-таки сверлильная головка потяжелее, чем лазер) нужна была еще одна такая же каретка. К счастью, рядом валялся такой же (или почти) TEAC . С механикой у них, похоже, стандарт. Короче, снимаем с него каретку, устанавливаем рядом с имеющейся, и вот что получилось:

    Рабочий ход этого тандема составляет около 10 мм – вполне достаточно. Можно, конечно, кое-что подпилить, чтобы, сблизив каретки, увеличить ход сверла, но нет смысла – станок предназначен только для сверления плат (по крайней мере, у меня).
    ПС. Один лазер демонтировать не удалось – так что можно смело в названии станка писать – «лазерный»!

    Теперь нужно подумать о станине. Смотрим на шасси этого же дисковода:

    Режем по красным линиям, подрезаем углы по вкусу. Разрез по зеленым линиям пригодится нам потом. Не забываем снять заусенцы – источники травм. В итоге получаем два одинаковых, но симметричных кронштейна:

    (Углы проверять не стал – все-таки TEAC – порядочная фирма). Просверлив необходимые отверстия, собираем станину, ориентируясь на имеющиеся на деталях полочки и уголочки:

    Вид с тыльной стороны (изнутри станка):

    Стрелками указаны места сопряжений деталей. Очень уж эти полочки и уголочки облегчают сборку! Не забываем устанавливать под гайки пружинные шайбы – станок же ведь! Вибрация…

    Теперь нужно подумать о сверлильной головке. Сначала хотел приспособить свой ДПР-12-2 27В 5000 об/мин (для него-то и городил вторую каретку, и, как оказалось, совсем не зря!). Но мой мотор на этой конструкции выглядел, как слон в посудной лавке!

    ИССЛЕДОВАНИЕ 1 . В дисководе оказалось два двигателя постоянного тока.
    Сначала я снял мотор привода каретки (виден на Рис.1). На валу его напрессована пластмассовая втулка, включающая в себя шестеренку и перфорированный диск. Подключив к контактам 12В, попробовал остановить вал пальцами – чуть кожу не содрал, а мотор так и не остановил. Диаметр втулки в свободном от шестерни месте – чуть больше 3 мм. Можно подогнать под цанговый патрон! Аккуратно спилив шестерню и подгоняя диаметр втулки (прямо на работающем моторе), пытаюсь напрессовать патрон на втулку:

    Честно говоря, у меня не получилось – получил биения и вибрацию. Пробовал вместо винтов ставить стопорные (без головок) – практически тот же результат. Скорее всего, это связано с соотношением масс мотора и патрона. Может, у кого получится — мотор заслуживает пристального внимания.
    Тогда мое внимание привлек мотор привода выбрасывателя. У меня был цанговый патрон от советской сверлилки – помните, наверное – маленький моторчик с тоненьким валом и здоровенный сетевой адаптер. Так вот, патрон от этой сверлилки по посадочному месту практически подошел по диаметру к валу. Намотал на вал один слой медной фольги – и патрон пришлось напрессовывать в тисках (соблюдая осторожность). В общем, думаю, хороший токарь с этой задачей должен справиться, ну а мне просто повезло.

    Продолжаем. Из остатков СД-шного шасси (см. Рис.2, зеленые линии) мастерим подходящий кронштейн и на него устанавливаем сверлильную головку. Прикрепляем агрегат винтами к кареткам по месту:

    Итак, станина готова!
    Нужно основание для станка. Без основания это дрель какая-то, что ли…

    ПС. Когда разбирал СД, мелькнула мысль использовать его корпус в качестве осонования – получилась бы почти полная унификация!
    Но! В-первых — жаба задавила, а во вторых (тоже немаловажно) – если монтировать станину прямо на корпус, нужно в корпусе сверлить отверстие для выхода сверла. А раз отверстие (пусть маленькое!) – то через неделю корпус будет забит стружкой. Чтобы не сверлить, пришлось бы на корпус установить фальшь-стол, в котором и просверлили бы это самое отверстие. Тогда зачем нам корпус? Короче, победила жаба. Скажу по секрету – спер на кухне разделочную доску (в ней есть даже дырка – вешать станок на гвоздик). Лучше всего, наверное, подойдет пластина из текстолита-гетинакса толщиной около 8 -12 мм. Тут уж – у кого что есть. Хотя перемонтировать станок на новое основание – тьфу! — 4 винта перевинтить.

    Итак, монтируем станину на кухонное основание:

    Т.к. будем сверлить платы не только маленькие, обеспечиваем между станиной и основанием зазор. Обеспечиваем его, устанавливая станину на винтах:

    Ничего более умного не придумал для обеспечения зазора, как навинтить на крепежные винты по одной гайке М4. Можно шайбы – короче, величину зазора можно регулировать – главное, чтобы в этом зазоре плата свободно перемещалась. Рабочее поле (расстояние от центра сверла до ближайшей опоры) – 80 мм — для моих целей достаточно (в конце концов, если не поместится, можно центр платы просверлить и вручную). Да и это не догма – можно крепление станка организовать по другому. А можно вообче станок демонтировать со станины и елозить им по плате…

    Красными стрелками указаны места крепления станины. Думал еще укосины смонтить – схематически нарисованы синим – но оказалось, что не нужно. Зеленым – размер рабочего поля.

    Уже можно сверлить, демонтировав верхний двигатель и двигая каретки пальцами.
    Каретки с головкой двигаются плавно.
    Но вот этот сАмый двигатель не дает покоя. Это ж ведь электроподача с редуктором! Концевики только поставь и дави себе на кнопочку-педальку.

    ИССЛЕДОВАНИЕ 2 . Подключив 12В к сверлильной головке, пытаюсь методом «тыка» подавать напряжение на мотор привода кареток. Нахрапом не получается. Если на мотор привода кареток подать 12В – плата не успевает просверлиться и начинают щелкать механические защиты на каретках. Если напряжение ниже – просверливается, но не всегда. Мотор привода кареток должен иметь небольшие обороты и при этом достаточную мощность. Думаю, применяя ШИМ на мотор привода кареток, можно попытаться добиться успеха. Пока откладываем. Может, у кого какие идеи появятся..

    Вырезаем по красненькому, получаем кронштейн. Особо не описываю, понятно из фото:

    Свтодиоды устанавливаем «на весу» на собственных выводах для регулировки зоны подсветки:

    На данном этапе демонтировал механизмы сцепления кареток с шаговым валом, «подвесил» пластину с каретками на пружинку и работаю.
    Пока все. На внутренней поверхности станка установлена клеммная колодка для подключения всего, что потребуется впредь. На нее подается 12В. Пока.

    Пылеотсос по крайней мере нужен еще, но это уже совсем другая история…